
Bill Carlson
IDA Center for Computing Sciences

Making High Performance
Computers Highly

Productive

What’s the state of high end computing?

Certainly not the best of times

What does “productivity” really mean?

Measurements?

A few ideas on a way forward

Agenda

We are getting many, many more cycles

With respect to ops, Moore rules

Memory bandwidth is starting to improve

Cray X1, Alpha EV7, Opteron, Others

We are getting some new applications

But not enough

What’s right

Still no stable market

Programming time is increasing

No real solution for parallel programming

Decreasing Numbers:

Users

Programmers

Institutions who care

What’s Wrong

Capability Profile

Time (years)

Capability

The Impact Zone

Impact

Capability Increase

Delay

Observations and
Trends

Delay to impact zone is too long

And growing

Length of impact zone is short

Excitement wanes quickly

Depth of impact zone is shallow

Productivity Today

Pr
od

uc
tiv

ity

Skill

Ideal
Application
Programming
HPC Programming 1980
HPC Programming Today

0?

Make the impact zone sooner, longer, deeper

Economics 101: Output per unit of input

GDP per unit labor-hour

Output is not ops, but impact

Input is not just $, but human capital

Real output of HPC is Understanding

Need to find the GDP for our field!

Productivity

Programming time:

Usually measured in SLOC/time

This is good for project managers

Very BAD for trying to tune productivity

presumes constant level of abstraction

OK, measuring run time is “easy”

Interpretation time?

All DEPENDENT variables!

Measuring is Hard

Computational Mass/Action (Bob Numrich)

Physics isomorphism:
work,distance,time -> ops, bits, hz
computational mass is derived: ops/(bit-hz)^2

Newton’s Laws (and much of physics) can be used!
Programming and Interpretation Work

Code/Data represented has some mass

Force needed to move from “bad” “location” to
“good”

Needs work, but hope for unification

One Measurement Idea

Scientific Productivity Stewardship?

Use science and engineering to guide us

Research: New ideas!

Vendors: Prototypes VERY Important!

Government: Getting it together

DARPA HPCS

IHEC, NAS study, HEC/RTF

A way forward

Pr
od

uc
tiv

ity

Skill

Ideal
Application
Programming
HPC Programming 1980
HPC Programming Today

Abstraction

Type less, reuse more

Persistence

Data lives a long time, why not use it?

Diversity of Expression

No one right way to say everything

Some Initial Ideas

Not just about “object oriented” languages

Abstraction about parallelism (UPC)

Abstraction about functionality (MatLab)

Abstraction about data (Transactions)

 Abstraction can’t mean low performance!

Runtime a big component of productivity

Re-Use

Abstraction

Architecture

More than “shared memory” or “message passing”

Hardware Assist

Better latency/bandwidth always needed

Content addressable memory?

NOT only software!

Some early experiments are encouraging

“Data Mining” and “Object Stores”

Databases integrated with simulations

Persistence as a parallel model

Transactions help tolerate both latency and
faults (both hardware and software)

Persistence

Procedural programming

Tell the computer the order to execute

Much research on integration here (babel)

Declarative programming

Tell the computer what you want (SQL)

Never work well together

Integration

Establish correlation between database
tables and data structures in memory.

“Queries” and “Updates” in database are now
automatic (Abstraction)

Program can “live” forever (Presistence)

Automatic checkpoint and restore

Many instances leads to parallel program

Database could be integrated with program

An Example - “autosql”

autosql example
struct mine t {int a, time_t b, double d);
struct auto_sql tbl { “select a,b from c”,
 {”a”, A_INT, A_OFF (t,a)},
 {”b”, A_DATE, A_OFF (t,b)}};

as = as_open (postgres:test);
dp = as_select (as, &tbl, “where d > %g”, 1.4);
if (dp) {
 struct mine *t = dp->data;

 for (i=0; i<dp->n; i++)
 {
 printf (”a:%d b:%s\n”, t->a, ctime(t->b));
 t++;
 }
}

High Performance computing is in trouble

Not because of performance growth

Simply not “productive” enough

There is a way forward

Abstraction, Persistence, Integration

I, for one, will start this journey

Please join me!

Summary

Pr
od

uc
tiv

ity

Skill

Ideal
Application
Programming
HPC Programming 1980
HPC Programming Today

